The beliefs about learning that different cultures have—that is, cultural models of learning—may influence the meanings children construct for learning and achievement.

Learning Models in Different Cultures

Jin Li

Victor came from China to the United States five years ago and is now attending the seventh grade in a Boston suburban school. When his father wrote in the “parent comments” box on Victor’s report card, which showed straight A pluses in all subjects, that his son needs to improve himself, Victor’s teacher called and asked, “What more do you want for your son? He is already the best!” Dumbfounded, his parents mumbled, “But a person needs to be humble and continue to improve himself in his learning. In China, parents share the same thing with teachers, and they wouldn’t complain like that! Victor is a happy child, and he’d be happier to stay humble.” Is this exchange between these parents and the teacher an isolated event, or does it reflect essential differences in how people in different cultures think about learning and achievement? Recent research on culture and learning shows that the latter is the case.

Research on Cultural Views of Learning

Human learning is a vast topic and has been researched from a great many perspectives. Recently, cultural differences in beliefs about learning have received increased attention. Researchers have made important advances in three relevant areas: views of intelligence, general attitudes toward learning, and motivation for learning and achievement.

The concept of intelligence, originating from the West, stresses logical-mathematical and verbal skills (Gardner, 1983; Sternberg, 1985) and is believed to underlie human learning (Gardner, 1991, Vernon, 1969). However, views from different cultures have been shown to diverge from this Western concept. For example, African conceptions emphasize wisdom,
trustworthiness, social attentiveness, and responsibility (Dasen, 1984; Serpell, 1993; Super, 1983; Wober, 1974). Japanese conceptions elaborate on different kinds of social competence, such as sociability and the ability to sympathize with others (Azuma and Kashiwagi, 1987); the Chinese view contains moral notions such as self-cultivation and self-improvement, although both the Japanese and Chinese conceptions share the cognitive dimension with the West (Li, forthcoming a; Yang and Sternberg, 1997). Within the United States, ethnic groups also have different views of intelligence; for example, Latinos regard social competence as part of intelligence more than their Anglo counterparts do, and Cambodians stress hard work and observance of school rules more than the other two groups do (Okagaki and Sternberg, 1993).

General attitudes toward learning across cultures have been examined primarily in the formal setting of school. Research shows that Western students focus more on individual characteristics such as independence, task efficiency, competition (Hess and Azuma, 1991; Varenne and McDermott, 1998), self-esteem, and social competence (Chao, 1996; Harter, 1993; Wentzel and Caldwell, 1997). Japanese students display a strong group orientation, compliance with authority, and thoroughness in their approaches to tasks (DeVos, 1973; Hess and Azuma, 1991; Lewis, 1995). Similarly, Chinese learners have more positive attitudes toward learning and higher standards for achievement than their Western peers do (Stevenson and Lee, 1990; Stevenson and Stigler, 1992). Furthermore, Chinese parents regard high expectation, studying hard, and family sacrifice as highly important for their children’s school success (Chao, 1996). Another study (Student Learning Orientation Group, 1987) found that students in Malaysia, Sri Lanka, and India viewed doing well on school exams as an important step in their learning, whereas students in Nigeria regarded both exams and formal learning as of less relevance to their lives.

Achievement motivation was originally defined in the West as a personality trait based on one’s sense of independence. Many non-Western cultures, including Latino, Indian, and Chinese, measured by this concept were once claimed to lack achievement motivation (McClelland, 1961, 1963). However, research since has challenged this initial claim. For instance, students in Mexico, a culture characterized as collectivist, were found to possess a high level of achievement motivation. Their Mexican American counterparts, surprisingly, had diminished achievement motivation as they resided longer in the United States, a typical culture that purportedly promotes independence. These students’ realization of their disadvantage associated with their ethnicity had more to do with their reduced level of achievement motivation than did their sense of independence (Suárez-Orozco and Suárez-Orozco, 1995).

Other research has presented even more diverse ways in which people from different cultures are motivated to learn and to achieve. For example, Salili, Maehr, and Gillmore (1976) found that while U.S. children showed
an outcome bias in judging school performance, their Iranian counterparts stressed the importance of striving itself and good intention regardless of one’s level of competence and productivity. Similarly, Western learners have been shown to value ability, whereas their Asian peers favor effort (Hau and Salili, 1991; Stevenson and Stigler, 1992). Even when Western learners attribute their achievement or failure to effort, they view it as an unstable cause (Weiner, 1986). By contrast, Chinese students not only value effort but also regard effort as a stable cause for learning and achievement (Hau and Salili, 1991; Salili and Mak, 1988). More in-depth analysis also has revealed that Japanese learners display culturally specific dispositions such as seishin, the mental attitude that helps one to tackle a task (White and LeVine, 1987), and gambaru, a “positive orientation toward the intrinsic benefits of . . . persistence” (Holloway, 1988, p. 330; also see Singleton, 1989; White, 1987). Finally, most recent research documents how the unique concepts of dusha (soul) and kulturny (culture) underlie Russian students’ motivation for learning (Hufton and Elliott, 2000).

A Critique of Traditional Research on Learning and Culture

These and many other research findings together make a compelling case that culture is an important source of variation in examining beliefs about learning. Despite these advances and the recognition of culture, we know little about how members of cultures conceptualize learning and achievement. There are at least three reasons for this gap.

First, we still rely heavily on preconceived notions about learning and achievement (a priori and etic), which were derived from Western traditional experimental research and applied straightforwardly to other cultures. Emic views (views of those being studied) of learning have rarely been studied directly (except perhaps the research on Japanese learning and achievement already discussed). For example, the notion of success in learning, originally from the West, is widely used to mean either the realization of one’s goal in some larger sense, such as getting a desired job with one’s skill mastery, or the completion of a specific task, such as solving a math problem. Regardless of how large the scope is, “success” emphasizes an end or closure of a learning activity that is (most often intentionally) pursued by the person. Although this concept in and of itself is unproblematic, it may cause concerns when it is uncritically applied to cultures where learning may not be viewed as something that has an end to it (for example, the Chinese notion of “one shall learn as long as one lives”). Admittedly, learning in the West is not limited to this kind of segmented process. Still, the concept of success (with “failure” as its imminent but psychologically dreadful opposite) in both research and educational practice means something different from the basic understanding of learning in Chinese culture. The common application of preconceived notions from one culture to
another raises concerns because the researcher assumes equal validity as well as equal degree of importance of those concepts in the two cultures. Measuring learning outcomes such as grades cross-culturally and labeling them as success is not to be confused with explaining intentions, purposes, significance, meanings, and processes with the same concept. These latter aspects are likely to be revealed when we consider emic perspectives.

Second, research on learning and achievement has been dominated by culturally specific conceptual frameworks. Research within these frameworks involves dichotomies such as success versus failure, ability versus effort, and intrinsic versus extrinsic motivation on the one hand and discrete, isolated variables (such as intelligence and expectancy) and tasks (such as solving a puzzle) on the other. Although scholars have recognized some problems that arise even examining one culture (Bempechat and Drago-Severson, 1999; Li, 2001a; Varenne and McDermott, 1998), these either-or and discrete views are deeply entrenched in research and education. Human learning and achieving experiences within any culture (including Western cultures) rarely involve only polar ends and isolated processes. These research frameworks reduce the rich but varied ways that humans conceptualize and approach learning. Including cultural differences as part of the inquiry requires even more recognition of the inherent limitations of these frameworks, as well as our effort to go beyond these boundaries. We have much to gain when we embrace and examine complexity.

Third, related to the other two issues is that research also seldom documents what anthropologists term meaning systems or cultural models (D’Andrade, 1995; Harkness and Super, 1996; Quinn and Holland, 1987) of learning (Li, 2001a). Cultural models refer to culturally constructed and shared domains of knowledge that serve to structure and constrain people’s experiences, “supplying interpretations” of and “inferences” about those experiences and “goals for action” (Quinn and Holland, 1987, p. 6) in a given culture. Moreover, these anthropologists have also argued and shown that such cultural models exert what D’Andrade (1987, 1992) called “directive force,” which motivates and guides people’s behavior. Knowledge acquisition is one such cultural meaning system that cannot be fully understood by investigating isolated variables and processes. For example, Chinese culture has been noted to emphasize effort, while the U.S. culture values ability. Aside from the unsettling dichotomous characterization of these two cultures, the general labeling alone gives the impression that these two notions are all there is to know about Chinese and U.S. conceptions of learning and achievement. The larger meaning systems involving people’s purposes, values, processes, and social, and even moral, strivings, as well as the relationships among various components, are ignored. To claim that the Chinese favor effort while the Americans emphasize ability is to notice just one part of the complex learning model from each culture. Many dimensions of these cultural learning models remain essentially unexamined.
A New Lens: Cultural Learning Models and Possible Developmental End Points

To address the above issues, I (Li, 2001a, forthcoming b) used prototype methods (Shaver, Schwartz, Kirson, and O’Connor, 1987) to tap indigenous conceptions without the preconceived notions. The purpose of the study was to describe what researchers consider developmental end points of cultural learning models as constructed by adults from two very different cultures: the United States and China. Middle-class European American college students (whom I refer to henceforth as U.S. students) and Chinese college students participated in the research.

Method and Data. I began the study by consulting terms referring to learning in both cultures with the highest frequency among its synonyms respectively (the higher the frequency, the more often the term is used by people in that culture) and found that learn/learning in English and xuexi in Chinese both occupy the highest frequency (Francis and Kucera, 1982; Wang and others, 1986). Then twenty fluent bilinguals translated each term into the other language, with half translating in one direction and the other half the reversed direction. This step led to the discovery that learn/learning and xuexi were the closest equivalents with a nearly perfect translation. Next, three participants from each culture free-associated words and phrases with the terms, which resulted in generating an initial list of 242 items in English and 145 in Chinese (see Table 3.1 for examples of these items). Twenty more participants were asked to provide additional items to these lists, leading to an expansion of 496 items in English and 478 in Chinese. In order to obtain a core list of these references to learning in each culture (and to exclude idiosyncratic items), sixty participants rated each of these items according to its relevance to learning on a four-point scale, with 1 indicating no relevance and 4 most relevance. This procedure yielded the final list of 203 items in English and 225 in Chinese, which was taken as representing the core conceptions of learning in the two respective cultures. Finally, in order to determine how these conceptions of learning are organized, one hundred participants in each culture sorted, based on similarity in meaning, items from their own culture into groups. Cluster analysis of these sorted groups produced two organizational structures of conceptions of learning (see Li, 2001a, forthcoming b, for more details).

Similar Complexity and Organization of Conceptions About Learning. First, both cultures have a similarly large set of conceptions about learning (203 U.S and 225 Chinese). The two models may be what Levy (1973) termed “hypercognized” (highly elaborated) domains in their respective cultures. Both models also contain intricate and nuanced ideas about learning. This is not surprising, considering that both cultures rely heavily on learning, especially in the form of formal schooling, for cultural transmission and renewal.
Table 3.1. Top Twenty Learning-Related Words and Phrases Nominated and Rated by U.S. and Chinese Adults

<table>
<thead>
<tr>
<th>Rank</th>
<th>Order</th>
<th>U.S. Items</th>
<th>Chinese Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study</td>
<td>Keep on learning as long as one lives (lifelong learning)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Thinking</td>
<td>Read extensively</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Teaching</td>
<td>Learn assiduously</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>School</td>
<td>Read books</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Education</td>
<td>Diligent (in one's learning)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reading</td>
<td>Extensive knowledge and multifaceted ability</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Teacher</td>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Books</td>
<td>Make a firm resolution to study</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Critical thinking</td>
<td>Study as if thirsting or hungering</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Brain</td>
<td>There is no boundary to learning</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Discovery</td>
<td>Concentrate on learning</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Understand</td>
<td>Eager to learn</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Information</td>
<td>Take great pains to study</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Knowledge</td>
<td>Seek knowledge</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Motivation</td>
<td>The learned understands reasoning</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Library</td>
<td>Study abroad</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Students</td>
<td>Do one's utmost to self-study</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Learn by doing</td>
<td>Learning without thinking is labor lost; thinking without learning is perilous (Confucius)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Applying ideas</td>
<td>After learning, one understands that one's knowledge is inadequate (Confucius)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Communication</td>
<td>Long-term diligence is the road to the mount of knowledge; endurance of hardship is the boat to the boundless sea of learning</td>
<td></td>
</tr>
</tbody>
</table>

Second, the two conceptual maps show a very similar mental structure, indicating that people in these two cultures classify ideas about learning into similar levels: higher, more abstract categories on top called “superordinate level,” less abstract categories in the middle called “basic level,” and more specific categories at the bottom called “subordinate level.” This kind of mental structure (classification of categorical domains such as natural objects or emotion knowledge) has been demonstrated to be basic to human mental functioning and therefore is believed to be similar across cultures (Rosch, 1975). These data and analysis lend additional support for this theory.

Different Meanings. Meanings of the categories and relationships are vastly different, in fact so different that there is little overlap. This is surprising considering that people in both cultures go to school for a similar length of time and learn similar school curriculum (math, science, and language, with Chinese children beginning to learn English in third grade). A perusal of the top twenty items on both lists in Table 3.1 is informative about the nature of the differences. Linguistically, the U.S. list contains mostly single and regular words (for example, *study* and *books*), whereas
most Chinese items (92 percent) have multiple words with many modifiers and idiomatic expressions, including proverbs and sayings (for example, “keep on learning as long as one lives”) compared to only 26 percent on the U.S. list. With respect to conceptual features, the U.S. list displays quite a few references to external factors such as resources, institutions, and teaching activities, but the Chinese list has few such references (18 percent versus 3 percent). Moreover, the U.S. list possesses many ideas about thinking, mental processes, and inquiry; the Chinese shows few such concepts (28 percent versus 9 percent). Most striking of all is the near absence of references to hard work, effort, and persistence on the U.S. list. By contrast, such concepts are abundant on the Chinese list (30 percent versus 2 percent). Another noteworthy feature is the strong affect indicating desire and passion on the Chinese list (for example, “Make a firm resolution to study”), while there is a relative lack of affect on the U.S. list. Finally, the Chinese concepts convey a clear call for action (for example, “Do one’s utmost to self-study”), thus exhibiting perhaps a stronger tendency of the so-called directive force (D’Andrade, 1987, 1992), but this tendency is less pronounced (perhaps implicit) on the U.S. list.

With respect to actual sorted meanings, the U.S. organizational structure begins with two large groups (superordinate level) labeled “learning processes” and “learning content.” The first group contains almost five times as many items as the second group. The size of the groups here could be interpreted as signaling a higher degree of both importance and complexity regarding the various dimensions of learning in the United States. The several intermediate groups (basic level) underneath each of the two groups are divided into another two types: learner characteristics and social context. The learner characteristics group consists of four dimensions: (1) specific processes (such as mental activities), (2) the learner’s inner qualities (such as intelligence and motivation), (3) resources (such as books), and (4) developmental foundations. At the same basic level, social context consists of two dimensions: (1) types of school and (2) people in teaching. The map’s second largest group, learning content (parallel to learning processes), contains various subjects that learners acquire, such as math and history.

Unlike the U.S. content, the Chinese organizational structure begins with the largest sorted meanings of “desirable approach” and “undesirable approach,” where values and preferences are clearly expressed regarding what approach to learning is desirable and what is not (compared to the relatively neutral nature of the U.S. dimensions). Similar to its U.S. counterpart, the Chinese desirable approach contains six times more items than the undesirable approach. The two basic-level groups under the desirable approach are “seeking knowledge” and “achievement.” “Seeking knowledge” contains four dimensions: (1) “heart and mind for wanting to learn” (an indigenous Chinese term used to describe one’s desire for learning), (2) learning methods (such as strategies and steps), (3) purposes of learning
(such as contribution to society), and (4) relationships between teachers and students. Again like the U.S. map, “achievement” at the same basic level also has two significant dimensions: (1) paths and tools (such as examination and bookstore) and (2) different kinds of achievement (such as breadth and depth of knowledge and moral integrity). The superordinate group “undesirable approach” indicates warnings, negatives, and taboos to be avoided in learning (for example, shallowness and lack of desire).

Juxtaposing the two cultures’ learning categories, it is apparent that U.S. and Chinese conceptions about learning are quite different despite the similarity in complexity and organization of the respective conceptions.

Under most of these basic-level groups of each culture’s model are distinguishable subordinate components where the actual words and phrases are located. A more detailed discussion is needed to bring to the light specific differences regarding the categories noted. Although each model contains many more noteworthy details, this chapter highlights the most significant components for each model (see Li, forthcoming b, for a full discussion). The significance level in this analysis was determined by the size of the groups. Thus, the U.S. subordinate components from three of the groups—“specific learning processes,” “individual characteristics,” and “learning content”—stand out because these have most items in them (35 percent, 17 percent, and 17 percent of the 203 total items, respectively). Three Chinese subordinate components also stand out: “heart and mind for wanting to learn,” “purposes of learning,” and “kinds of achievement” (28 percent, 12 percent, and 20 percent of the 225 total items, respectively).

Most Significant U.S. Conceptions About Learning. The U.S. “specific learning processes” group, the largest of all groups, contains four distinct but also related components. Items in the first component, active learning, center around the notion that learning is a process in which a person needs to be actively involved, as indicated in the phrases “hands-on” and “learn by doing.” The second component, thinking, concerns the mental processes that play an essential role in performing remarkable but finely differentiated feats—for example, “contemplating” and “deductive/inductive” reasoning. The third component, inquiry, stresses how one tries to find out about things in the world through a variety of mental and other activities (for example, “relating ideas”), as well as how one exercises critical thinking in these activities (for example, “challenging assumptions”). Finally, the fourth component, communicating, emphasizes the communicative aspect as an integral part of the learning process that is participatory and interactive but also with a critical attitude toward the process conveyed in terms such as debate and critique. These and many other ideas in this basic group are core notions of the Western discourse on learning and education (Bruner, 1996; Gardner, 1999; Perkins, 1995). Although each of these four components focuses on a certain set of notions, they are also interrelated. All seem to denote the very active nature of mental processes and inquiry-oriented activities that underlie Western conceptions of learning.
The second most significant group, “individual characteristics,” contains conceptions that indicate internal qualities that individual learners possess and are regarded as an essential part of the human capacity for learning. Four distinguishable components emerged. The first, cognitive skill, shows concepts such as memory and focus that learners can use or manipulate for any learning tasks. The second component, motivation, refers to motivational aspects, for instance, ambition and commitment. These notions are essential to achievement motivation, which usually has been studied as individual characteristics of the person, particularly with respect to his or her goals (Maehr and Pintrich, 1991, 1997). The third component, open-mind/creativity, shows ideas about creativity in learning, such as open-mindedness and imagination. This dimension of the learner is widely recognized in research and education, as well as by laypeople. In fact, the West, especially the United States, carries a reputation for fostering open-mindedness, imagination, and creativity (Gardner, 1989). The final component, intelligence, displays different forms of intelligence, such as “booksmart,” “wisdom,” and “street-smarts.” Of the four personal characteristics, these finely differentiated notions of intelligence are central to Western learning (Ogbu, 1994; Varenne and McDermott, 1998).

The third largest U.S. group, subjects of learning, contains a long list of school subjects, types of knowledge, and fields of inquiry. These break into two sets, with the first being basic skills, such as reading and basic arithmetic, and the second being more strictly “school subjects” such as algebra, biology, and literature. All of these bodies of knowledge are the content that the entire group of learning processes aims at acquiring.

Most Significant Chinese Conceptions About Learning. The largest Chinese group is “heart and mind for wanting to learn.” As this native term suggests, this group addresses conceptions of personal causality. Four distinct but interrelated components emerged. The first, lifelong pursuit, expresses ideas about one’s need to pursue lifelong learning (for example, “there is no boundary to learning” and “upon great achievement, make still further progress”). The second component reveals a four-part disposition: diligence, hardship, steadfastness, and concentration. Diligence refers to the frequency of studying behavior, emphasizing much time spent on learning, as exemplified by “always have a book in one’s hand.” Endurance of hardship focuses on overcoming difficulties, especially physical drudgery and poverty (for example, “Zhu Maicheng studied while woodcutting—too poor to go to school”). Learning in Chinese tradition is rarely thought of as fun (but “fun” is on the U.S. list) or entertainment, as may be the case with European Americans (Chao, 1996). Instead, it is viewed as a seriously disciplined activity that presents challenges and difficulties, even an “ordeal” for developing character (Lee, 1996; Li, 2001a; Mencius, 1970), as attested to by phrases such as “endurance of hardship is the boat to the boundless sea of learning.” Steadfast perseverance is believed to be important because knowledge does not come about overnight, but through a bit-by-bit, accumulative process over a long period of time (Lee, 1996). Steadfastness is
required to achieve any serious learning, as exemplified in the phrases, “It takes more than one cold day for the river to freeze three feet deep” and “Without accumulating small steps, one cannot reach a thousand miles.” Finally, concentration is used to describe a general learning behavior (across specific tasks) that emphasizes studying with consistent resolution and dedication (for example, “put one’s heart into one’s study”). Concentration is held as an essential ingredient of Chinese “heart and mind for wanting to learn” because it can ensure a fully engaged mind and heart in the study (Yang, 1979).

The third component in this basic group is humility, which is regarded as a basic orientation toward learning in the Confucian model (Kwok and Lytton, 1996; Lee, 1996; Li, 2001a; Tu, 1979; Wu and Lai, 1992). It refers to a mind-set that regards people as always in need of improving themselves, always ready to be taught and to seek learning (for example, “modest people learn much as little; complacent people learn little as much”). The last component, desire, refers to an enduring and inner desire for learning (for example, “heart and mind for wanting to learn”).

The second most significant Chinese group, purposes of learning, has three components that address people’s reasoning concerning why they seek knowledge and what benefits they gain from learning. The first one, learning as an end in itself, refers to the notion that learning is essential to being human (for example, “a knife will rust without sharpening,” “a person will fall backwards without learning”). The second subgroup, status, conveys that learning can benefit the person for practical purposes—either gaining social status and material benefits or bringing honor to one’s family (for example, “learn well and then become an official” and “with math, physics, and chemistry well learned, one has no fear going anywhere”). The third component, contribution to society, reveals the idea that social consciousness and serving the community are part and parcel of one’s learning (for example, “cultivate personal life, regulate familial relations, order the affairs of the state, and bring peace and stability to all of the world”).

The ideas contained in this basic group are central to Confucian teaching. Accordingly, pursuit of learning is held as the only path toward the highest goal of Confucianism: self-perfection. Obtaining status and bringing honor to oneself and one’s family are not contradictory to searching for a higher meaning of life because one’s own learning is not only an individual but also a profoundly social process. Therefore, contributing to society is seen as necessary for completing the cycle of self-perfection (Lee, 1996; Li, 2001a; Tu, 1979; Wu and Lai, 1992).

The third most significant Chinese group, kinds of achievement, shows concepts that refer to the consequences of seeking knowledge. There are also four subordinate components. The first, breadth and depth, emphasizes the extensiveness as well as deep understanding of a subject and genuine scholarship (for example, “extensive knowledge and profound scholarship”). The second, extraordinary abilities (for example, “able to recite
something after reading it over once”), indicates that the Chinese consider ability to be a subgroup of achievement instead of a cause of achievement or an inherent trait (as it is commonly viewed in the West). Knowing and morality, the third subordinate component, emphasizes the unity between learning and one’s moral character (for example, “a student of good character and scholarship”). The fourth, originality, refers to one’s creativity (for example, “original view”).

Interpretations of the Two Learning Models. Few shared meanings exist between these two cultural models, with each focusing on entirely different aspects of learning (this is also true across the remaining categories that are not discussed in this chapter). Admittedly, there may be some isolated similarities—for example, between the U.S. “motivation,” “commitment,” “memory,” and “creativity” and the Chinese “heart and mind for wanting to learn,” “make a firm resolution to study,” “able to recite something after reading it over once,” and “original view,” respectively. Still, large differences exist mainly because these U.S. items emerged as learner characteristics closely related to one’s cognitive skills and personality traits. The Chinese items belong to the group singly and signify attitudes, desires, related behaviors, and achievement.

Taken together, the U.S. learning model (representing Caucasian middle- and upper-middle-class members) basically presents a view of learning as a process by which individuals' minds acquire what is out there. Knowledge exists as a more or less neutral body (as embodied by the large number of school subjects) that the minds of individuals can acquire. The conceptual focus is on the distinction between this neutrally existing knowledge body and the internal characteristics of the individual that enable the person to acquire it. The internal learner characteristics include cognitive skill, intelligence, and abilities, on the one hand, and thinking, communicating, and active engagement in the learning processes, on the other. Motivational factors such as interest, curiosity, willingness, and commitment are also part of the internal makeup of a person that serves to facilitate the learning process. The social context is the setting, typically the formal one of school.

This view of learning and knowledge is consistent with the well-established tradition of Western epistemology where knowledge addresses basic questions: What is out there to be known by the mind? What knowledge is reliable? How does the mind know it? How can it be best taught from the perspective of education (Bruner, 1987; Piaget, 1952; Russell, 1945; Scheffler, 1965)? To be sure, some scholars have recently raised issues about whether beliefs about learning ought to be considered as part of epistemology (Hofer and Pintrich, 2001). This view may be important in differentiating motivational aspects from more cognitively oriented construals of knowledge. However, the findings of the study examined here point to the neutral construal of knowledge and learning. Clearly, although learning is an important part of the lives of the Western subjects studied, it does not
seem to evoke passionate affect or to be intimately connected to the emotional, spiritual, or moral lives of the respondents. Thus, it is reasonable to suggest that the U.S. view of learning may show a “mind orientation” toward learning.

Members of the Chinese culture may view learning as a personal relationship that the individual builds to knowledge. Unlike the Western construal, the Chinese regard knowledge as something that is indispensable to their personal lives—something that creates meaning for their lives, without which human lives would be unthinkable. This view is also consistent with the age-old understanding of knowledge based on Confucian thought. Knowledge includes not only the externally existing body but also social and moral knowing. The scientific agenda of knowing the world is not the ultimate purpose. Although the Chinese, like the Americans and members of other cultures (Ogbu, 1994; Serpell, 1993; Suárez-Orozco and Suárez-Orozco, 1995), also endorse utilitarian benefits as part of their motivation for learning, their purpose does not end there. Individuals also seek learning in order to cultivate themselves as a whole toward self-perfection beyond the specifics of knowledge and utilitarian ends (Li, 2001a, 2002; Yu, 1996). Chinese beliefs about learning therefore seem to display a person orientation, which elaborates on personal causation of learning (Li, Yue, and Yuan, 2001). As a result, knowledge is not something that Chinese lives can do without; it is something that they must have. This need of knowledge and the seeking of it require that Chinese cultivate the desire to learn, engage in lifelong learning, remain humble, and adopt an action plan of diligence, endurance of hardship, steadfast perseverance, and concentration. Unlike the Western mind orientation, the Chinese person orientation addresses the fundamental questions of what knowledge means to one as a sociocultural being, why one needs to learn it, what one needs to do to learn it and learn it well, and what would happen if one does not learn it. This kind of learning aims at breadth and depth of knowledge, the unity of knowing and morality, practical benefits for oneself and one’s family, and contributions to society (Lee, 1996; Li, 2001a, forthcoming a; Tu, 1979; Wu and Lai, 1992; Yu, 1996).

The findings produced by this study may help illuminate the clash between Victor’s parents and his teacher. Victor’s parents operated quite consistently within the Chinese learning model, where a child’s report card is only a signpost on his road to lifelong learning. Because his life is about ongoing striving toward self-perfection, it is, reasoned his parents, important for Victor to remain humble and continue to self-improve. When it comes to learning, there is in their minds no such a thing as “you are the best in class, and therefore you may relax.” However, the teacher, based on his comments, may have not understood this Chinese learning model and took the attitude of Victor’s parents as psychologically problematic. Probably this incident is not an isolated event but reflects deeper meanings people in different cultures construct about learning.
Developmental Indications

The differences explored here could be viewed as developed forms of learning models in these two cultures. Given these so-called developmental end points, a further question arose as to how children develop these models of learning in their respective cultures. To pursue this research question, my research team (Li, 2001b) began examining U.S. and Chinese preschoolers' understanding of learning (this research is ongoing). Our purpose was to discern emergent thoughts and feelings about learning in these two cultures.

We collected data from 240 children aged three though six, half from China and half from European American backgrounds and half boys and half girls (all from the middle and upper middle class with at least one parent who was college educated). We first showed the children a series of pictures accompanied by a narration depicting a cow that, on seeing a book, decides either to play with a ball or to read the book. Children were asked to pick their preferred ending of the story. They were also shown familiar learning scenarios (a child who is either eager or not eager to go to school and a bird that tries hard to learn how to fly or a bear that gives up on catching fish) with the accompaniment of story beginnings and were asked to complete them.

Preliminary analysis of the five year olds’ responses to the cow story indicates that more than twice as many Chinese (60 percent versus 23 percent) chose the book as opposed to the ball option. Moreover, among those who chose the book, more than twice as many Chinese children gave learning and knowledge-related reasons (60 percent versus 27 percent).

In addition, we identified five types of benefits that the children’s responses revealed about reading books:

Intellectual benefits. The children’s responses referred to learning, increasing one’s knowledge, skill, making one smart, and the like—for example, “so you will learn things” (a U.S. response) and “so I can grow knowledge” (a Chinese response).

Language use. The responses contained children’s ideas about words, reading, and writing and what they do with them—for example, “you learn how to read.”

Achievement-based status and respect. The ideas stated highly desirable statuses and respect people gain with learning and education—for example, “you can become a Ph.D.” or “a scientist,” and “I want to surpass my teacher” (both Chinese).

Social sharing of knowledge. The responses referred to learning and helping others with the child’s skill—for example, “you’d not grow big if you can’t help others when they ask you about something” and “when kids are fighting, we can tell them why it’s not good to fight” (both Chinese).

Material benefits. The responses concerned ideas that aim at making money, buying desirable things, or getting a good job.
Again, Chinese children expressed significantly more intellectual benefits than did their U.S. peers (94 percent versus 17 percent), and many Chinese, but few U.S. children mentioned the remaining types of benefits. However, many U.S. (but few Chinese) children referred to language use, where they showed remarkable understanding of learning words, how to read and write, and creative ways to use their literacy skills (for instance, “I can get ideas from books and draw people”).

With regard to children’s responses to the two stories about a child who is eager or not eager to go to school, large differences also emerged. Although both U.S. and Chinese children liked the protagonist who wanted to go to school, many more Chinese (96 percent versus 25 percent) did so for learning-related reasons (for example, “because she loves to learn”). Most U.S. (70 percent) but no Chinese children liked the protagonist for nonlearning and nonsocial reasons (for example, “I like his haircut”). The majority of U.S. children (70 percent) still liked the protagonist who did not want to go to school but gave non-learning-related reasons (for example, “she is pretty”). By contrast, most Chinese children (75 percent) did not like the protagonist for his or her lack of desire to learn compared to only 2 percent of U.S. children who did so.

As a common finding, children from both cultures expressed positive affect toward school and had sophisticated ideas and feelings about school. Consistent with the cow story, however, Chinese children showed a higher frequency of every kind of benefit from learning, knowledge about school, and awareness of social support for their learning (for example, “Mommy says, ‘My son, you need to go to school to learn. If you don’t, you will not know a lot when you grow up. Mommy will be sad ’”) than their U.S. peers. Furthermore, Chinese but no U.S. children made references to achievement-based status/respect (for example, “so you can become a Ph.D.”). Interestingly, many U.S. but very few Chinese children identified “making friends/playing with them” as a main reason for going to school.

Overall, these preliminary findings seem to show resemblance of the two cultures’ learning models, although Chinese children showed more resemblance than U.S. children. Chinese children expressed highly positive and consistent values about learning. Whether these children liked the protagonist was associated directly with whether the protagonist desired learning. This tendency is not only consistent with their adult model, which contrasts their “desirable” against their “undesirable” approach to learning, but it also reveals the degree of importance learning assumes in these children’s lives (to the degree that their social relations—liking or not liking their peers—are influenced by their learning model). In addition, Chinese children identified more types of benefits for themselves as well as benefits for others from learning (for example, “if kids are fighting, we can tell them why they should not fight” or “if people don’t understand something and ask you, you can tell them, so they’ll know”). They also revealed more knowledge about learning in school, such as listening to the teacher,
paying attention, and making effort. Finally, they showed more awareness of social support for their learning by frequently imitating their parents’ voices of expectations and persuasion (for example, “Mommy says, ‘If you don’t learn, you won’t know a lot’” or “Mommy says, ‘You must go to school, or you’ll beg on the street’”). These trends again seem coherent with the emphasis of the Chinese model on linking learning to one’s whole life development (person orientation) including not just the intellectual but also the socioeconomic, social, moral, attitudinal, and behavioral course of learning.

There also seem to be some emergent themes from the U.S. model. First, for U.S. children, desire or lack of desire for learning is not a reason for liking or not liking someone. Most children liked the protagonist regardless of positive or negative valence of this particular domain of life. We could interpret this tendency as suggestive of children’s socioemotional life being somewhat detached from learning (that is, school), which is coherent with the relative emotional neutrality observed in the U.S. adult learning model. These children also identified fewer benefits from learning (to the exclusion of several Chinese categories, such as achievement-based status/respect for learning, material benefits, and, to a large extent, social benefits for others). Again, this could be taken as indicative of learning being viewed as a less encompassing activity and process for their lives. Although for many U.S. children, the utilitarian purposes of schooling will soon be a familiar theme throughout their school career, this dimension is absent in both the adult model and younger children’s understanding of learning. Perhaps Americans have more differential views of the process of learning and schooling than the Chinese, therefore attaching different meanings to these processes.

U.S. children made six times more references to making and playing with friends as a main reason that they go to school. Although this theme was not a dimension in the U.S. adult model, fun was. Embedded in the children’s references was also the notion of fun, which has been noted as a strong goal for school success among European American but not Chinese mothers of preschool children (Chao, 1996).

The most salient feature of the U.S. model—the heavy emphasis on the mental functioning (mind orientation)—was not explicitly and systematically reflected in the children’s references despite isolated acknowledgment that learning can make one smart. Perhaps this part of the understanding of learning is yet to develop among U.S. children. Nevertheless, U.S. children elaborated on one additional dimension that their Chinese peers rarely, if at all, mentioned: language learning and its creative use (for example, “I can write a book” or “you can get ideas from books and act them out”). The attention to imagination and creativity in this area reflects the same emphasis in their adult model. Here, children’s understanding does show their awareness of the mental and the mind’s prowess to manipulate the symbolic world of the print.
Conclusion

This chapter presents cultural learning models as constructed and expressed by people themselves in their own cultures (emic) as a useful perspective on human learning. Although all humans are endowed with capacities to learn and most of them go to school, their understanding of learning may still differ substantially due to cultural values and priorities.

These cultural learning models are meaning systems that are not reducible to single notions of intelligence, discrete or dichotomous concepts such as ability versus effort and success versus failure, or traditional delineations of achievement motivation. Both the U.S. and Chinese models reveal many more conceptions about learning than these common characterizations of each culture’s learning mode. Clearly, the U.S. elaboration of the mental functioning, active nature of engagement, social context, and learning content cannot be reduced to the notion of ability. In the same way, the complex relations about personal conviction, purpose, agency, and achievement conceptions of the Chinese cannot be condensed to the single notion of effort either. Cultural learning models are larger systems of influence, and their complexity merits careful examination.

Researchers studying culture and psychology generally agree that there is no one-to-one correspondence between a given cultural model and individuals’ own models and that individuals appropriate, negotiate, and even reject cultural models (Spiro, 1987; Strauss, 1992). Nonetheless, as LeVine (1999) recently argued, cultural impact is evident and acknowledged even when individuals oppose it. So long as children are socialized in their own cultural contexts, their cultures’ learning models are bound to exert a so-called directive force to their thinking, feelings, behavior, and outcome of learning (D’Andrade, 1992).

Inquiry into cultural learning models needs to continue. Previous research has provided some important glimpses at parts of these models in various cultures, but they generally fall short of addressing them systematically. The empirical research presented in this chapter seeks to describe these meaning systems from two distinct cultures and to document their early beginnings as young children develop them. The findings confirm the conceptual position that learning models are complex meaning systems, that they differ from culture to culture, and that children begin developing them early in life. Understanding these models and their development may be essential in explaining children’s motivation for and ultimate achievement of learning in diverse cultures.

References

LEARNING MODELS IN DIFFERENT CULTURES

LEARNING MODELS IN DIFFERENT CULTURES 63

Jin Li is assistant professor of education and human development at Brown University, Providence, Rhode Island.