
1

Propositional Glue Semantics is Fully Variable-Free
Avery Andrews
ANU, Dec 2016

early draft (v1); please do not criticize in print

Asudeh (2006) argued that LFG with its ‘glue semantics (Dalrymple 2001, Asudeh
2012) was variable-free in the sense of Jacobson (1999), but there was at least an
apparent gap in the argument, which is that glue derivations are normally presented
with ‘meaning terms’ that involve variables in their presentation. In this paper I
show that if we use the ‘propositional’ glue1 proposed in Andrews (2010b), a simple
application of ‘rudimentary’ linear logic, the system is definitively variable-free, and,
furthermore, bears a certain resemblance to Chomsky’s external and internal Merge,
for what that may be worth (possibly very litte).

Unfortunately, the discussion requires basic category theory, being a trivial application
of Lambek and Scott (1986:41-81), henceforth LS. Trying to include an introduction
to category theory in a linguistics paper is not realistic, but LS is in principle self-
contained, and a more leisurely introduction to the required background material can
be found in Barr and Wells (1999a), chs 1-6.2 We will be reviewing some aspects
of Cartesian Closed Categories (CCCs), but will assume more basic material without
comment. The degree to which this material is elementary cannot be overestimated;
indeed, I am puzzled as to why it seemed necessary to me to write this now, rather
than having had it available to read at least fifteen years ago.

Glue semantics, without monads3 and similar elaborations, is essentially Montague
Semantics without his NL syntax, which latter is replaced by a technique for connecting
the ‘semantic derivation’ to LFG’s f-structures. To have Montague Semantics without
the syntax, we need to use something like Montague’s intermediate language of lambda-
terms, which we here present as arrows in a free CCC. These are then mapped by a
functor into whatever CCC the model theoretic semantics lives in, which by default
should I think be taken to be Sets (the category of sets), just as in Montague’s work.

In the first section, I’ll discuss these two CCCs and the relationship between them, and
in the second, I will show how the free CCC is closely related to another kind of category,
a free ‘symmetric monoidal closed category’ (SMCC) which is just another way of
presenting rudimentary linear logic. I will also point out that if we omit the information
about the connection to NL syntax, we can use the standard linear logic rules of
‘implication elimination’ and ‘implication introduction’ as approximate equivalents to
external and internal Merge, and with them generate the set of meanings of a given
type that can be assembled from a multiset of lexical meanings, that is, a numeration.

1The first version of glue, ‘old glue’, is presented in many of the papers in Dalrymple (1999),
including Dalrymple et al. (1999), which describes the transition to ‘new glue’, in its ‘System F’
version, which is based on a limited form of higher order linear logic, and the most widely used.
Kokkonidis (2008) argued that System F could be replaced by first order linear logic, while Andrews
(2010b) argued that propositional ‘rudimentary’ linear logic will suffice.

2With some obvious possible omissions, such as factorization systems and sketches.
3As discussed by Giorgolo and Asudeh (2012 and 2014).
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I suspect that the significance of this is that Merge is not really a new idea, but an
imprecise way of putting things that have been known for a long time. Then in the
third section, I briefly discuss ways of connecting the semantic generation system to
LFG syntax in order to get glue semantics for LFG.

1 Montague Semantics via CCCs

Richard Montague (1970a, 1970b) founded contemporary formal semantics by con-
necting linguistic expressions to a system of semantic types built up recursively by
function-space formation from basic types such as ‘entity’ and ‘truth value’. His tech-
nique involved considerable use of highly repetitive definitions involving variables and
assignments of values to the variables (Bennett (1974) is probably the most extensive
example, Partee (1976) the classic anthology). Given that Montague’s work was to a
considerable extent based on Lambek (1958), it is perhaps not surprising that Lambek’s
later work would also apply usefully to it.

1.1 Free CCCs

A CCC is a category with three things:

(1) a. A terminal object 1, such that for each object A there is a unique arrow
1A :A → 1.

b. A product, consisting of, for each pair of objects A,B, a product object
A × B and two arrows (projections) π1

A,B :A× B → A and π2
A,B :A×B → B

such that for any arrows f :C → A and g :C → B, there is a unique arrow
<f, g> :C → A×B such that π1

A,B ◦<f, g> = f and π2
A,B ◦<f, g> = g.

c. An exponential, consisting of, for all objects A,B, an exponential object
A−◦B4 and an evaluation arrow ǫAB such that for each arrow h :C × A → B,
theres is a ‘curried’ arrow curA,B,C(h) which is the unique arrow h′ from C to
A−◦B such that ǫAB ◦ (h′ × IdA) = h.

For Sets, any set with only one element will do as 1, the regular cartesian product
with its projections and pairing operations can, and for Montague Semantics, must, be
take to serve as the product, and function space formation will therefore be determined
as the exponential.5

Lambek defines free CCCs by first setting up an appropriate kind of ‘deductive system’,
which is a kind of graph where formulas are objects and deductions are arrows, and then
using equations to group the deductive system arrows into equivalence classes, which

4The ‘lollipop’ is the linear implication symbol, an unusual choice for the exponential, but all the
choices for this have some problem, and the lollipop is widely used in glue semantics, our destination.

5Via the adjunction relation between product and exponential in CCCs, which we won’t discuss
here. In more general terms, the CCC functor must be ‘strict’ in certain respects, but can be ’lax’ in
others.
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obey the category and CCC axioms. The objects can also be thought of as types, and
we form them by starting with some basic objects/types, and applying constructors
recursively to get more. In the linguistic applications, the basic types are the basic
semantics types such as e(ntity) and p(proposition),6 and any others we wish to have.
For a CCC, the type-constructors are will be binary operation symbols for ‘product’
and ‘exponential’. We also pick an otherwise unused symbol to be 1.

The deductive system arrows will furthermore be symbolic objects as specified in (1),
with identity arrows added, and with syntactic concatenation. This is then converted
to a CCC by grouping deductions (graph arrows) into equivalence classes to satisfy
the axioms for categories in general and CCCs in particular. The category axioms are
for the identities and associativity of concatenation, while the CCC axoms are given
below.

For arrows to 1:

(2) If f :A → 1, then f = 1A.

The interpretation of this is that any arrow that happens to go from A to 1 is grouped
into the same equivalence class as 1A.

For products:

(3) For all f :C → A, g :C → B, h :C → A× B:

a. π1
A,B<f, g> = f

b. π2
A,B<f, g> = g

c. <π1
A,Bh, π

2
A,Bh> = h

One can show that these equations give the same results as the standard formulation
in (1b).

And finally the exponential. The full cur symbol with its three subscripts is too
cumbersome for convenient use, espcially when any of the types are long, so we will
normally write it as a ∗ superscript (the types can be read off from that of what it
applies to). So the equations are:

(4) a. ǫAB<h
∗π1

C,A, π
2
C,A> = h

b. (ǫAB<kπ
1
C,A, π

2
C,A>)∗ = k

This again gives the same result as the formulation in (1b).

What is important about the free CCC on a given set of basic objects is not the
particular technique that is used to construct it, but rather the Universal Mapping
Property of what is constructed:

6t is more commonly used for things that have truth-values, but p is less suggestive of extensionality
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(5) Any mapping of of the basic objects of the free CCC into the objects (basic or
not) of any other CCC C can be extended in a unique way to a strict CCC
functor from the free CCC to C .

The reason for this is that the free CCC is constructed so as to obey no laws other
than the CCC laws and that it contain the basic objects, so it contains nothing that
is contradictory with the principles of any other CCC that can provide images for the
basic objects. Universal Mapping Properties also have the consequence that any two
systems that satisfy them are isomorphic. Therefore we can talk about the free CCC
on a set of basic objects, and forget about the construction method, once we have
satisfied ourselves that it works.

What we mean by a ‘strict CCC functor’ here is a functor that maps all of the CCC
apparatus of the source CCC onto that of the target CCC exactly (‘on the nose’). So
if F is a functor from C to D , then:

(6) a. F (1C ) = 1D (note that the category symbol subscript here is taken to indicate
the category that the 1 is the terminal object of, rather than an arrow to the
terminal object).

b. F (1A) = 1F (A) (here our subscripts indicate the object that the arrow to the
terminal object is from).

c. F (A×B) = F (A)×F (B) (we could have subscripted × with category symbols
here, but didn’t).

d. F (πi
A,B) = πi

F (A),F (B) for i = 1, 2, and F (<f, g>) = <F (f), F (g)>.

e. F (A−◦B) = F (A)−◦F (B), F (ǫAB) = ǫ
F (A)
F (B),

and F (curA,B,C(h)) = curF (A),F (B),F (C)(F (h))

By contrast, a ‘lax’ functor maps the CCC apparatus of the source category onto things
that are natually isomorphic to the specified CCC apparatus of the target, which is
often good enough for the purpose at hand.

For Montague Grammar, we need a functor taking the free CCC into Sets; for things
to work, we need to take the product apparatus strictly onto the cartesian product
apparatus of Sets (I think), but the other aspects of the funcor can be lax: any one
element set will do as value of 1, and any right adjoint of × in Sets will do as the value
of the exponential apparatus. The free CCC on the basic types and the CCC functor
into Sets therefore give us a variable-free counterpart to Montague’s lambda-calculus
intermediate language. But there are some details in setting up interpretations that
are worth looking at.

1.2 Montague Interpretation of a free CCC

If we have decided on some basic types, such as e and p, we are ready to set up an
‘interpretation functor’ Σ from the free CCC on those basic types to Sets. But, because
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we’re using category theory, we’ll designate the types as E and P , using uppercase,
since this is the convention for objects in category theory.

So our first decision is to chose Σ-images for the basic types. E is easy, any old
set will do, since entailment is typically defined in terms of an arbitrary ‘universe
of discourse’, meaning, entities that one might want to say something about. P is
harder, because its image is a fixed choice embodying a great deal about what kind of
semantics we are doing. For a simple extensional semantics, it can be any two-element
set with one element representing ‘true’, the other ‘false’, for Montague’s intensional
semantics, the powerset of some set of ‘possible worlds’ (which would also vary with
the interpretation). These are not the only possibilities.

The next thing we need to think about is interpretations for lexical items, which sends
us back to fiddling with the free CCC. In Sets, these will be elements of the members of
images of the types (basic and composite); for example the interpretation of Rover will
be an element of Σ(E), the intepretation of Barks an element of Σ(E−◦P ) = Σ(P )Σ(E).
What will correspond to these in the free CCC? Happily LS:57-58 provide an answer,
indeed they provide two, although only the second one seems suitable for us, because
we want to add arrows from 1. In particular, to the deduction system underlying the
free CCC, we add some ‘assumptions’, being arrows from 1, and then form a ‘free
CCC with indeterminates’ by imposing appropriate equations on arrows. On pg. 58
an appropriate universal property is formulated and proved.

Σ will now map the assumptions onto arrows in Sets from 1 in that category, and,
as such, they will pick out elements of the appropriate interpreted semantic types.
Furthermore, if we construct a product of the ‘assumptions’, which we will call ‘lexical
indeterminates’, and construct an arrow that goes from this product to P , we have
something that Σ will map onto a model-theoretic interpretation. So for example if we
have the lexical indeterminates of (a), below, we can apply ǫEP to their product to get
an arrow that Σ will map onto the truth-value/proposition expressed by Rover barks
under the interpretation implemented by Σ:

(7) a. Rover :1 → E, Barks :1 → E−◦P

b. ǫEP (Rover× Barks)7

With this technique, we get a variable-free implementation of model theoretic semantics
that furthermore lacks the extensive and repetitive boilerplate formulations of early
Formal Semantics that is I think perhaps not completely gone even today. That it
is truly variable-free might not be entirely clear at this point, because what will we
do about wide scope readings of quantifiers? We will see how these work in the next
section, when we start looking at glue. But first I want to make a few more remarks
about aspects of using CCCs for formal semantics of Natural Language.

7In this case, we could pair the lexical arrows rather than make a product of them, but the minor
convenience attained this way dissipates in more complex situations.
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1.3 Aspects of Formal Semantics of NL in CCCs

The first point is that to do formal semantics of natural language in a more or less
traditional way, we require two kinds of lexical indeterminates, ‘fixed’, and ‘variable’.
Montague’s program for formal semantics comprised two things, the first, defining
truth, the second, defining entailment. The first is I think rather dubious for, NL,
for reasons such as those adduced in LePore (1983). The second is however much
more straightforward (at least by comparison to the first). The idea is that a set of
sentences S entails a single sentence s iff every ‘interpretation’ that assigns ‘true’ all
the sentences of S also does this for s.8 An interpretation is an assignment of model-
theoretic values to items which have them, which in Montague’s framework would not
include the logical words, whose ‘meanings’ are fixed by the structure of the interpreta-
tion function. So model-theoretic semantics provides us with a mathematically precise
account of entailment and other meaning-based properties and relations, which, al-
though itself nonconstructive, can be used to provide a basis for constructive accounts
via completeness theorems, and has other uses as well.9

But to adapt such an account to this new setting, we need to specify the interpretations
of the ‘logical words’ as fixed, and leave the other ones to vary so as to provide a set
of ‘admissable interpretations’ to define entailment:

(8) A set of (declarative) sentences S entails a sentence s if every admissable inter-
pretation (choice of Σ) that assigns ‘true’ to the sentences of S true also assigns
‘true’ to s.

There are more meaning-based properties of and relations between sentences than
entailment, but entailment is clearly the most important one.

Returning to lexical indeterminates, a sample fixed one would be the interpretation
of every in accord with the now standard account of natural language quantifiers as
generalized quantifiers (Barwise and Cooper 1981). Its type is (E−◦P )−◦(E−◦P )−◦P ,
and if we assume that the first ‘(E−◦P )’ applies to the nominal (the ‘restriction’), and
the second to the scope, the interpretation in an extensional semantics must be the
function that maps the two one-place predicate arguments to ‘true’ if the first denotes
a subset of the second, to ‘false’ otherwise. Sample variable arrows would be Rover

and Bark, as above.

Another point is that some arrows can have their interpretation fixed as an inherent
property of admissable interpretation functors, while others can be constrained by
relationships that they must satisfy with respect to others, as in algebraic semantics
as discussed by Link (1998).

The free CCC gives us a variable-free intermediate language whose structure is very
close to that of model-theoretic interpretations, that can be mapped into those in-

8Note that assigning a model-theoretic ‘true’ value to a sentence doesn’t imply making any claims
about what actually makes that sentence true.

9Some discussion of the issues from a viewpoint largely independent of traditional formal semantics
and logic can be found in Andrews (2016).
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tepretations so as to define entailment (by contrast, some other variable-free systems,
such as combinatory logic, look very different from Sets; we do not assume that any
particular system is ‘best’, but that the more different ones are known and under-
stood, the better). The direct categorical representations are rather forbidding, but
lambda-calculus can be used as a more user-friendly notation, with the complexities of
variables and the rather complicated systems for managing them and calculating alpha
equivalence relegated to the status of occasionally annoying downsides of a notation
that is often useful, rather than as actually constitutive of anything.

A final observation is that although this approach does restrict us to CCCs for semantic
interpretation, it does not restrict us to Montague-style set-theoretic interpretations:
anything that can be presented as a CCC and provides a reasonable counterpart to
concepts such as ‘true’, ‘every’, etc. will suffice. The possibilities would include Pol-
lard’s (2008) ‘intensional semantics’, and perhaps some other systems as well, such as
maybe some version of Jackendoff’s ‘conceptual semantics’.

On the other hand, there are significant challenges, such as what to do about dynamic
phenomena such as those studied in DRT,10 and worked out versions of formal seman-
tics that are not obviosly instances of a CCC, such as Muskens (2007). But we will
leave these topics here, and push onto the next one, which is converting free CCCs
into a technique for doing free semantic composition of multisets of words, that is,
‘numerations’ in the sense of recent works by Chomsky.

2 Free Semantic Composition

It is obvious that the idea that the meaning of a collection of words is heavily con-
strained, sometimes even fully determined, by just the meanings of those words and
nothing more. A collection of words such as {bit, Rover, John} probably means Rover
bit John, and definitely does not mean John was rude to Susan. But the set of words is
not quite enough, the multiplicity of each word counts. For example, we cannot convert
I did not eat the last chocolate from a denial to an ‘understood confession’ either by
ignoring the not, or by interpreting it twice to produce a double negative.

What can be done with a ‘multiset’ of words, where each must be used exactly as many
times as it appears, is part of the idea of a numeration in the Minimalist Program,
but also a fundamental idea of linear logic as developed by Girard and others in the
1980s, providing the mathematical basis of glue semantics. The early versions of glue
semantics look very distant from CCCs, but the distance is significantly reduced in
the ‘propositional glue’ approach of Andrews (2010b), but is still substantial, because
the ‘rudimentary linear logic’ (RLL; multiplicative intuitionistic linear logic without
exponentials, less derisively called MILL−) used in propositional glue is based on Sym-
mmetric Monoidal Closed Categories, whose definition is considerably more complex
than that of CCCs.

10Monads as discussed in Giorgolo and Asudeh (2012 and 2014) seem relevant, but do not yet
constitute a full solution.
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2.1 Free SMCCs

However, I think it may have been overlooked, or at least not pointed out with sufficient
clarity and emphasis for the needs of linguists, that for glue semantics, we can bypass
many of the complexities of SMCCs, since all we need for glue is free SMCCs on a set of
basic types, which are considerably simpler than general SMCCs, and closely related to
the free CCCs that are useful for semantics. What we will do is form the subcategory of
a free CCC that results from only recognizing some of the CCC arrows, namely, certain
combinations of the projections and pairings, and their compositions. Typographically,
we also replace the ‘×’ symbol with the ‘⊗’ (‘tensor’) symbol, since among the arrows
discarded are some that are responsible for some of the essential properties of CCC
products (the possibilities for ‘copying’ and ‘erasure’) and we relabel the terminal object
1 as the CCC as I, the unit of the SMCC, since it is not a terminal object, because
we discard all of the arrows to it. We regard these symbolic substitutions as mere
typographical cues as to what rules we are working with at the moment; the actual
constitutive elements remain the same.

What we do next is define the free SMCC on the basic types as a subcategory of the
free CCC on those types, having the same objects but not all the arrows. The arrows
that it has are those of the smallest subcategory that contains first, these:

(9) a. For every object A, its identity arrow IdA.

b. For any two objects A,B, σA,B :A⊗B → B ⊗A = <π1
A,B, π

2
A,B> (the ‘sym-

metry’).

c. For any three objects A,B,C:
αA,B,C :A⊗ (B ⊗ C) → (A⊗ B)⊗ C = <<π1

A,B×C , π
1
B,Cπ

2
A,B×C>, π2

B,Cπ
2
A,B×C>

and α−1
A,B,C :A⊗ (B ⊗ C) → (A⊗B)⊗ C (the ‘associator’ and its inverse; you

can construct the latter explicitly from the CCC materials).

d. For any object A, ρA :A → A⊗ I = <IdA, 1A> (the ‘right unitor’ for A; for
glue semantics we don’t actually need the unitors, but they are required for a
proper SMCC; below we’ll discuss a consequence of omitting them).

And then those derived from other arrows by these steps, inductively:

(10) a. For any two arrows f :A → B and g :B → C, their composition gf :A → C.

b. For two arrows f :A → B and g :C → D, the ‘tensored arrow’
f ⊗ g :A⊗ C → B ⊗D = <fπ1

A,B, gπ
2
A,B>.

c. For any arrow h :A⊗B → C, its curry curA,B,C(h).

Note especially that we cannot use the projections or the arrow-pairing construction on
their own anymore, but only in the combinations specified in (9), since free use would
allow meanings to be ignored or used multiple times.
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By defining the free SMCC as a subcategory of the free CCC on the same objects, we
avoid the need to contemplate the rather complex collection of arrow equations nor-
mally used to define SMCCs, as for example in Troelstra (1992:81-86). The necessary
behavior follows from the CCC principles, with some behaviors that we don’t want,
such as copying and deletion, excluded.

There are many things we can’t do with free SMCCs, such as quantum physics, but
they are all we need for compositional semantics. But there is a problem with the
lexical arrows. Naively, one might think that they can simply be adjoined as arrows
from I, similarly to what works for CCCs, but this turns out to destroy the resource
sensitivity that we want: if we have an arrow f :I → A, we can construct an arrow
from I to A, A ⊗ A, etc. This is because of the unitors. There is a construction for
adjoining arrows from I to an SMCC (Hermida and Tennent 2009), but it doesn’t have
the properties we want.

So we need to do something a bit awkward, but not horribly so (and this is not the only
way to do it). We start by taking a product of the lexical arrows in the CCC, including
multiple occurrences of anything we are going to use more than once, one occurrence
for each use. We can call this the ‘lexical product arrow’, or even ‘the numeration’.
Then we shift to the SMCC to find an arrow in the SMCC from the target of the lexical
product arrow to P or whatever other kind of meaning we are looking for. We can call
this the ‘(semantic) composition arrow’. Composing the image of this arrow under the
embedding functor from the SMCC with the lexical composition arrow in the free CCC
gives us an arrow from a product of 1’s, which is not significantly different from an
arrow from 1, to an element of P or whatever we were looking for. The usual labelled
deduction format can be viewed as an incremental way of representing arrow-building,
whereby the deduction steps represent steps in building the SMCC arrow, the formulas
the target type of the arrow constructed thus far, and the meaning terms the CCC
arrow constructed thus far. The crucial step is to start with a product of arrows,
rather than mere objects.

It is furthermore the case, most easily seen by the use of proof nets (Andrews (2010b)
and briefly below), that if we are looking for a specific type such as P , E or E−◦P , that
there are a only a finite number of different such arrows, since each arrow is represented
by a pairing of atomic symbols in formulas subject to the proof-net constraints, and
there are only a finite number of such pairs (but if we don’t have a finite list of types
of result we will accept, there are no longer a finite number of assemblies, as we discuss
below).

So we now have something that functions in a way analogous Chomsky’ numeration
with Merge, except that the semantics is inherently part of it, and effectively does
the work that features do to control the application of Merge. A practical use of the
system (which could probably be done with Merge as well) is to find what sense can
be made of a multiset of words on the basis of their semantic types alone, ignoring
syntax. It is then a cleaner (and more powerful) version of the functional realization
mechnanism of Klein and Sag (1985). It could be helpful, and perhaps something like
it even used by humans, in language-learning situations where the syntax is not (very



10

well) known, but the meanings are known well enough, and context provides a filter
on possible interpretations.

2.2 Arrows from Tree-style ND

It has been known for a long time that free SMCCs are equivalent to various ways of
doing rudimentary linear logic deductions (showing this is presented as a ‘straightfor-
ward exercise’ in Troelstra (1992:86)), so we can in fact continue to do them with our
favorite method without worrying about categories, but nevertheless, I think it would
be good to see how to construct the SMCC arrows we want by doing conventional glue
proofs, since these do provide a relatively easy-to-use construction method. We will
look at tree-style natural deduction, which is the system most often used in the litera-
ture, e.g. Dalrymple (2001) and Asudeh (2005a, 2012), for the most part restricted to
the implication rules.

Tree-style ND proofs are normally presented as ‘labelled deductions’, where the label
appears to the left of a colon in the formulas being proved, and, in our present frame-
work, represents the CCC interpretation of the arrow constructed so far, and to the
right of the colon appears a type, also constituting the proposition being proved from
the assumptions (types of the lexical items in the enumeration).

The two basic rules are:

(11)

f : A−◦B a : A
−◦ elim

f(a) : B

[x : A]i
·
·
·

m : B
−◦ intri

λx.m : A−◦B

In spite of unusual-looking lollipop, these are the normal rules of implication elimina-
tion (Modus Ponens) and implication introduction (Hypothetical Deduction); what is
different is that the environment they are functioning in, linear logic, which is very
well suited to the tree-style presentation, since the requirement that each premise be
used once and once only can be naturally implemented by requiring that the premise
instances appear as leaves of a tree, with the nodes and their branchings determined
by the deduction rules. Here is an example, where it is assumed that transitive verbs
are curried, and the arguments applied in order of increasing agency:

(12) Loves : E −◦ E −◦ P [x : E]1

−◦ elim
Loves(x) : E −◦ P Rover : E

−◦ elim
Loves(x)(Rover) : P

−◦ intr1

λx.Loves(x)(Rover) : E −◦ P Everybody : (E −◦ P )−◦ P
−◦ elim

Everybody(λx.Loves(x)(Rover)) : P

The index i in the rule is to be instantiated with a different number or similar uniquely
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identifying tag for each use of the rule in the deduction tree. Note the opposite con-
ventions about types versus function application: for the types, we omit rightmost
parentheses including outermost, for function application, leftmost, so that, for a 2
argument function, the function plus the argument that appears first is construed as a
function that applies to the argument that appears second, both arguments in paren-
theses of their own (the original Montague convention).

This format of derivation pushes the categorical machinery under the rug/behind the
drywall; our purpose here is to pull it out and look at it (very likely, only once!).
To work through it, we need evaluation, currying and the symmetry and associators
(unitors appear to play no useful role, and their availability perhaps can even cause
trouble, as we discuss below).

To begin with, it is relatively easy to see what the −◦ elim rule does: it applies evalu-
ation. So if we start with Barks × Rover in the free CCC, this gives us a very simple
derivation that we could represent like this:

(13) Barks : E−◦P Rover : E

ǫEP (Barks× Rover) : P

We don’t need the justifications anymore, because the existence of the arrows is shown
by their actual appearance in the conclusions of the steps, to the left of the semicolon.
Note that since all the SMCC arrows are available in the CCC, we can code the
SMCC/CCC steps into the left sides, while leaving the right only designating the
target of the arrow constructed so far.

A more complicated derivation would be:

(14) Loves : E−◦E−◦P Susan : E

ǫE
E−◦ P

(Loves × Susan) : E−◦P Rover

ǫEP (ǫ
E
E−◦ P

(Loves × Susan)× Rover) : P

An initial question is: what if the assumptions are organized wrong? The arrow pro-
duced above will work on assumptions organized as in (a) but not (b) below:

(15) a. (Loves × Susan)× Rover

b. (Rover× Susan)× Loves

The answer is that the symmetry, associators and identities (the ‘rearrangement ar-
rows’) can always be used to get the premises into the right organization. There is
in fact a celebrated theorem, MacLane’s Coherence theorem, that says that this can
always be done in a unique way. It would be a reasonable ‘finger exercise’ to write
out the combination of associator, symmetry and identity arrows to get the target of
the (b) arrow in (15) to match the source of the arrow in (14) (identities are needed
to operate on objects that are embedded inside tensors, for example IdA ⊗ σB,C goes
from A⊗ (B ⊗ C) to A⊗ (C ⊗B)).
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The rearrangement arrows also need to be used inside the glue derivation, when we use
−◦ intr to get the effects of bound variables, without actually having the latter. This
works by introducing and then ultimately in effect removing an identity arrow:

(16) . . . [IdA : A]i . . .
·
·
·

φ : B
i

(φ ◦ ξ)∗ : A−◦B

where ξ is rearrangement determined as discussed below

The ‘. . .’s flanking the introduced assumption represent the other premises used to
derive the arrow φ with target B. But to use this rule, we will usually need to use
the rearrangement facilities to in effect get the A input to the outer right edge of the
source of φ.11

For a simple example, consider the composition of the meaning ofRover loves everybody,
assuming that everybody is of semantic type (E−◦P )−◦P . We start by composing an
identity arrow and the Rover : E with Love : E−◦E−◦P :

(17) Love : E−◦E−◦P [IdE : E]i

ǫE
E−◦ P

(Love × IdE) : E−◦P Rover : E

ǫEP (ǫ
E
E−◦ P

(Love × IdE)× Rover) : P

This is an arrow from ((E−◦E−◦P ) ⊗ E) ⊗ E to P , but to get apply the curry step
as we want to we need to get the inner E to the outer right edge, which first applying
αE−◦ E−◦ P,E,EσE,Eα

−1
E−◦ E−◦ P,E,E

, which will be ξ in (16) above. So the curry step is:

(18) Love : E−◦E−◦P [IdE : E]i

ǫE
E−◦ P

(Love× IdE) : E−◦P Rover : E

ǫEP (ǫ
E
E−◦ P

(Love× IdE)× Rover) : P
i

(ǫEP (ǫ
E
E−◦ P

(Love × IdE)× Rover)αE−◦ E−◦ P,E,EσE,Eα
−1
E−◦ E−◦ P,E,E

)∗ : E−◦P

Now we have something that Every can apply to yield the desired meaning. One could
derive a precise algorithm to read off ξ from the position of the discharged premise
amongst the other premises that lead to the discharge step, but this is not necessary,
since the system here is not constitutive, but only aspires to be helpful. Suites of
operations to assist with concisely specifying rearrangements of premises can be found
in Mackie et al. (1993) and Biermann (1994).

There are two additional rules in the RLL system, the introduction and elimination
rules for tensors. Both are little used, and the introduction rule can be avoided entirely
if we assume that all arguments are curried. It looks like this as an arrow-building rule:

11But in another formulation of Natural Deduction, sequent-style ND, this is done more explicitly.
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(19) f : A g : B

f ⊗ g : A⊗ B

We can see that if we decide that the type of transitive verbs should be (E ⊗E) ∈ P ,
then we can use (19) to develop the two arguments independently and then combine
them together into something to apply the verb to.

The elimination rule is more complex, and looks like this as a regular ND rule:

(20)

[a, b] : A⊗ B

[x : A]i [y : B]j
·
·
·

z : C
⊗elimi,j

let a, b be x, y in z : C

To see how this rule is used and what the mysterious-looking let-statement is supposed
to be doing, consider the assembly below for John shaves himself. The idea is that the
pronoun makes a copy of its antecedent meaning and puts one in its own position, the
other in that of its antecedent (details and motivation in Asudeh (2012)):

(21)

λx.[x, x] : e−◦(e⊗ e) John : e

[John, John] : e⊗ e

Shave : e−◦e−◦p [x : e]1

Shave(x) : e−◦p [y : e]2

Shave(x)(y) : p
⊗elim1,2

Shave(John)(John)

So we can see is that what the let-statement expresses is simultaneous replacements
in a formula, an inherently apparently complex operation.

The categorical version of this rule allows us to replace this complex operation with
inherently simpler-looking steps, rearrangements with the symmetry and associators.
Given the form of the left hand portion of the rule, it would seem easiest if we as-
sumed that the right side is rearranged to the form (A⊗ B)⊗ C, where A ane B are
the two items we are going to substitute for, C the remaining premise. Mac Lane’s
theorem tells us that we can always rearrange the premises into this organization;
αE−◦ E−◦ P,E,EσE−◦ E−◦ P,E⊗E will do the job in the present case. In general, there will
always be a unique rearrangement (arrow composed only of α’s and σ’s) τ i,j and a type
S−i−j whose source type is (A⊗ B)⊗ S−i−j and whose target type is the source type
of f . Therefore we can reformulate (20) as:

(22)

g : A⊗ B

. . . [x : A]i [y : B]j . . .
·
·
·

f : C

fτ i,j(g ⊗ IdS−i−j ) : C

The multi-substitutions are thus replaced by mere rearrangements.
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We can therefore build the arrows we need for glue semantics using the familar method
of ND tree derivation (as well as various others), and it is also straightforward to show
that this method as well as various others can build all of them. So what we have done
is demonstrate that the appearance of variables in the glue terms is a mere convenience.

2.3 Notes on Proof-nets, Units, and Incomplete Assembly

Before going on to glue semantics itself, there are some related topics that people might
or might not want to look into.

One of the techniques for doing RLL proofs as a rather interesting one called ‘proof-
nets’. To discuss proof-nets we first need to introduce the concept of ‘sequent’: a
sequent is a statement that a collection of premises leads to one or more conclusions;
the premises are written to the left of a symbol such as ⊢, the conclusion(s), to the
right. Fortunately, semantic assembly requires only single-conclusion (‘intuitionistic’)
sequents, so we don’t have to worry about the multiple-conclusion ones. So a sequent
for a very simple assembly would be:

(23) Barks : E−◦P,Rover : E ⊢ P

Several proof methods, such as sequent-style ND, and ‘Gentzen sequent proof’, use
direct manipulation of sequents, but proof-nets are yet another method, due to Girard,
where you can represent a proof merely by connecting the atomic formula letters (often
called ‘literals’) of a sequent in pairs, according to certain rules. The proof-net proof
of (23) for example is:

(24) Barks : E−◦P ,Rover : E ⊢ P

The rules for proof-nets are discussed at considerable length in Andrews (2010b), and,
less technically, in Andrews (2010a), and won’t be discussed here, but what I want to
point out is that they provide at least two things:

(25) a. A clear demonstration that there are only a finite number of essentially differ-
ent RLL proofs of a given sequent (including zero, if the sequent is invalid).

b. A very efficient way to represent partial assemblies: all we need to do is put in
some but not all of the links, and do not even need to include the conclusion.

Point (b) becomes relevant when we consider the how meanings might function in
online speech processing: words come in, we don’t necessarily have all of the syntax,
but we want to put things together as best we can, without wasting any available
information, of which the semantic types of the words provide a certain amount. This
acquires a bit more bite when we move onto the next topic, the SMCC units.

The proof-net technique works well, and is simple and efficient unless any of the for-
mulas (premises or conclusion), contains a unit, whereupon things get very difficult:
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proof-nets with units have been the topic of more than one PhD thesis, and there still
doesn’t seem to be any fully satisfactory solution, although there are workable ones.
Fortunately for us, for NL semantics we don’t seem to need them: there is no clear
use for constructors of the form I−◦A, A−◦I, etc. But they do play a rule in certain
intermediate steps of deductions, which can be problematic.

Suppose for example that we had a semantic type of the form (A−◦A)−◦B. Given
this, we can prove either of the two sequents below:

(26) a. (A−◦A)−◦B ⊢ B

b. A−◦A, (A−◦A)−◦B ⊢ B

(b) not disturbing: it resembles assemblies/proofs involving quantifiers, except that
there is only one basic type involved instead of two.12 (a) is another matter. We
can prove it because we can assume A, and then discharge A immediately to derive
A−◦A, and then use that to satisfy the implicational argument position of (A−◦A)−◦B.
Mathematicians and logicians want A−◦A to be a theorem, but in linguistics, it seems
to make a bit of a mess. And having it be a choice to include A−◦A among the premises
or not is even worse.

In categorical terms, this unwanted proof involves the unitor: because we have the
arrow ρ−1

A :A⊗ I → A, we also have the arrow (ρ−1
A )∗ :I → A−◦A. If we did not in-

clude the unitors in the category formed by dropping arrows from the free CCC, this
possibility would be blocked, along with various other useless ones, such as deductions
formed by tensoring B−◦B onto the conclusion of anything, for any B:

(27) a. ⊢ B−◦B

b. A ⊢ A⊗ (B−◦B)

c. E,E−◦P ⊢ P ⊗ (E−◦E)

Dropping the unitor and its inverse is essentially the same thing as forbidding deduction
from zero premises. Such a system seems to work for semantic assembly, but does not
seem desirable to logicans and mathematicians, who want theorems such as (a) above.
Perhaps the system without unitors could be called ‘Excessively Rudimentary Linear
Logic’.

It would be a strong point in favor of ERLL if it blocked all useless possible conclusions
from a collection of premises, but it doesn’t. Here is another kind of structure that
can be produced in the conclusion of a sequent without any specific warrant from the
premises:

(28) A ⊢ B−◦ (B ⊗A)

12And so might arise in practice if we had only one basic type (Partee 2006).



16

The trick used here can be repeated to produce conclusions of arbitrary complexity
from a single premise A. This particular one could be blocked by forbidding the use
of tensors taking inputs (the ones not used in current glue), but there would still be
no proof that further unwanted forms of conclusion don’t exist. So ERLL on its own
doesn’t constitute a full solution to this problem; perhaps something more general can
be worked out and proved sufficient.

3 Glue Semantics

We now have a system for producing semantic assemblies of multisets of lexical items;
to turn this into glue semantics, we need to connect this to syntactic structure, so that
grammar can constrain assembly. The technique can be regarded as subdividing the
type system, so that syntactic locations are also part of it. The essential idea is to
‘enhance’ lexical arrows to become ‘meaning-constructors’, which contain not only the
semantic and type information, but also information about the relationship to syntax.

However there are a number of variations in how this can be accomplished. There seem
to be at least two major ones:

(29) a. To use or not to use a semantic projection.

b. To use ‘co-description’, or ‘description by analysis’ (DBA).

Most glue work, including Dalrymple (2001) and Asudeh (2012), has used a semantic
projection and co-description. The semantic projection is a system of feature-structures
proceeding off f-structures, typically with its own attributes, while co-description is
the tactic of including the meaning-constructors in full (inflected) lexical entries, using
LFG’s ↑-arrows and instantiation to connect them to the f-structure.

On such an account, the full lexical entries, including the meaning-constructors for Alfie
chuckled are given as (30) below, roughly following Asudeh (2012:82) but including
tense:

(30) a. alfie : (↑PRED)= ‘Alfie’,Alfie : ↑σe

b. chuckled : (↑PRED)= ‘Chuckle(SUBJ)’, (↑TENSE)=PAST,

Chuckle : (↑SUBJ)σe
−◦↑σt

,Past : ↑σt
−◦↑σt

The full lexical entries for these words produce the following f-structure for this sentence
with its semantic projection (left out of Asudeh’s presentation), whose (disconnected)
substructures I have tagged as sg and sf :

(31) 







SUBJ
[

PRED ‘Alfie’
]

PRED ‘Chuckle’

TENSE PAST









[ ]:sg

[ ]:sf
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The three constructors therefore become instantiated as follows:

(32) a. Alfie : sge

b. Chuckle : sge−◦sf t

c. Past : sf t−◦sf t

We can think of this as expanding the original basic semantic types to pairs, one mem-
ber of which is a basic semantic type, the other a location in the semantic projection:

(33) a. alfie : <sg, e>

b. chuckle : <sg, e>−◦<sf , t>

c. Past : <sf , t>−◦<sf , t>

The full pair-types are what is used for the construction of glue arrows, and the struc-
tural component is discarded in the mapping to the free semantics CCC.

The main issue with the semantic projection is lack of motivation. Most of the glue
literature contains none whatsoever; Asudeh (2005b) offered an argument that was
countered by Andrews (2010b), who proposes instead that meaning-constructors link
directly to f-structures. There is clearly no problem in principle with this, and it also
would appear to be the default hypothesis from the point of view of simplicity. But
more recently, Asudeh et al. (2014) have presented an account of linking theory wherein
an enriched version of the semantic projection plays the role of argument structure (or
is it perhaps the other way around?). If this wins out over any competitors, or no
comparably worked out competitors are developed, then we can regard the semantic
projection as empirically motivated.

The issue of co-description versus DBA glue is trickier. The idea of DBA13 is that
meaning-constructors are introduced/licensed on the basis of f-structure configuations,
without reference to conventional lexical items. Andrews (2007, 2008) proposes DBA
glue on primarily architectural and esthetic grounds, and the glue implementation
that existed in the XLE14 for a while also used DBA, but this appears to have been a
technologically rather than theoretically motivated decision (Richard Crouch p.c., and
folklore).

Andrews’ 2008 version of DBA glue works by having a ‘Semantic Lexicon’, whose entries
(SLEs) specify both meaning-constructors and f-descriptions. Here the f-descriptions
are represented graphically, and the connections by dotted lines, going directly to f-
structure, with no semantic projection:

(34)
[

PRED ‘Watch’
]

⇔ e→t : λx.Watch(x)

13See Dalrymple et al. (1995:275-276, 283-284) for some general discussion of description by analysis.
14Xerox Linguistic Environment; a powerful implementation of most of LFG theory.
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If this SLE is used, the PRED-feature value ‘Watch’ in the f-structure is marked as
‘used’, or ‘checked off’, so that no SLE cannot be introduced again on the basis of this
occurrence of the feature-value. This version of DBA was thought of in conventional
LFG terms as ‘generating’ the c-structure and computing the more abstract levels from
that.

The proposal of Andrews (2007), intended for use in an Optimality Theoretic version of
LFG, uses the same format of SLE, but the conceptualization of what they do is some-
what different: we might call it ‘co-generative’. In that approach, you use the SLE’s
and glue assembly to produce a pair of f-structure and meaning-assembly, and then
you use regular OT-LFG to produce a matching f-structure. Instead of checking off,
there is a stipulation that in this process, features don’t unify (at least by default; stip-
ulative variation in both mechanisms are easily envisioned). This idea can be adapted
to non-OT LFG, by simply using regular LFG to produce c-structure f-structure pairs,
with the f-structures produced by the two ‘generative’ processes required to match
(matching involves some issues, such as the fact that certain features, such as syntactic
case, would appear to have to be ignored for matching).

It seems to me that it will be hard to find a clear empirical difference between co-
descriptional and DBA glue (alfter almost ten years, there is still nothing that looks
very solid), and that the co-generative version of DBA will be even harder to distinguish
from the other one, and is probably just a matter of preferred conceptualization. But
the co-generative conception does lead to an architecture that is not so different from
the Minimalist Program, in that there is a semantic level (glue assembly) connected to
an overt performance level (c-structure) by meaning of an interface mechanism. The
details are very different, but perhaps a greater comparability of architecture can make
it easier to identify empirically significant differences.

4 Conclusion

So this story takes as as far as 1970s Montague Grammar, but of course now there is
more, staring with the phenomena addressed in the Discourse Representation Theory
and its variants and competitors that appeared at the end of the 1970s, which may
or may not fit in to a CCC-based approach. Monads as discussed for example in
Giorgolo and Asudeh (2012 and 2014) are helpful, but are not yet a complete solution.
I also have a suspicion that another kind of mathematical device called ‘coalgebras’
might be needed, since these are good for thinking about things, such as input-output
streams and conversations, for which termination is not an intrinsic aspect of their
nature (whereas, a sentence, in order to function as part of a conversation, needs to be
thought of as inherently finite in nature).

I close with two final observations. The first is that this general approach resembles
that of Chomsky in that linear order is essentially irrelevent. By contrast, Lambek has
proposed two somewhat similar approaches, categorial grammar, and pregroup gram-
mar, which are fundamentally based on the idea that syntactic structures are linearly
ordered. This is a possibly profound difference into which we may some day get some
real empirical evidence. The other is that pregroup grammar is associated with the
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use of compact closed categories, which are a kind of ‘opposite’ to cartesian closed
categories. A significant attraction of the compact closed categories is the possibility
of doing a kind of ‘compositional distributional semantics’ based on (linear algebraic)
tensor algebra, and it seems plausible that this could be done off the glue SMCC as
a kind of independent branch of the interpretation of the semantic structure. Un-
fortunately, it is not all clear to me, from the kind of literature I have seen, exactly
what compositional distributional semantics is supposed to accomplish, but the field is
moving fast, so perhaps something helpful will appear before too long—it often takes
time for intuitions that people are pursuing to get presented in more widely intelligible
forms.
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